
ipython galaxy notebook

August 30, 2016

1 An interactive Galaxy Jupyter Notebook: Plotting read cover-
age distribution from a BAM file

You can access your data via the dataset number. For example, handle = open(get(42), ’r’). To save
data, write your data to a file, and then call put(’filename.txt’). The dataset will then be available in
your galaxy history. Notebooks can be saved to Galaxy by clicking the large green button at the top right
of the IPython interface. More help and informations can be found on the project website.

1.1 Getting data in

After starting Jupyter session we are copying a dataset from Galaxy history space into Jupyter space. In
this particular case the dataset we need have number 8 in Galaxy’s history. We set bam file to 8.

If you want to use a di↵erent dataset as input -> replace 8 with the number of that dataset

In [1]: bam_file = 8

In [2]: get(bam_file)

Out[2]: ’/import/8’

1.2 Renaming dataset

get command names files using their galaxy history id. This is not a very meaningful name. So we will use
UNIX commend mv to give this file a di↵erent name: hiv mapping.bam (here ! is used to tell Jupyter that
we want to execute a shell command):

In [3]: !mv {bam_file} hiv_mapping.bam

1.3 Configuring bioconda

The easiest way to compute the depth of sequencing coverage is with samtools. However, they need to be
installed. In turn, the easiest way to install samtools is with conda - a new generation package manager
system. Here we are configuring conda’s biological software channel bioconda

In [4]: !conda config --add channels bioconda

Warning: ’bioconda’ already in ’channels’ list, moving to the front

1.4 Installing samtools

And once conda is configures installing samtools is as easy as this (note the -y option required here):

In [5]: !conda install -y samtools

1

Fetching package metadata ...

Solving package specifications: ...

Package plan for installation in environment /opt/conda:

The following packages will be downloaded:

package | build

---------------------------|-----------------

conda-env-2.5.2 | py34 0 27 KB

The following packages will be UPDATED:

conda-env: 2.5.1-py34 0 --> 2.5.2-py34 0

Fetching packages ...

conda-env-2.5. 100% |################################| Time: 0:00:00 274.92 kB/s

Extracting packages ...

[COMPLETE]|###| 100%

Unlinking packages ...

[COMPLETE]|###| 100%

Linking packages ...

[COMPLETE]|###| 100%

1.5 Split bam file on readgroups

In this example the bam file combines mapped reads derived from three di↵erent expriments. The relationship
between each read and a corresponding sample is maintained with read group tags. Since we want to compute
depth of coverage for each sample separately, we first need to split the original bam file into by read groups.
This is done using samtools split command:

In [6]: !samtools split hiv_mapping.bam

Listing files will show three newly generated datasetes called hiv mapping 0, 1, and 2:

In [7]: !ls

9 hiv mapping 1.bam readgroup 1.cvrg

all cvrg.txt hiv mapping 2.bam readgroup 2.cvrg

hiv mapping.bam ipython galaxy notebook.ipynb

hiv mapping 0.bam readgroup 0.cvrg

1.6 Computing coverage

We compute coverage using samtools depth command. Note how Python’s for loop is used here. It iterates
over three numbers (0, 1, and 2) generated by the range function. There are substituted into file names.
This way we generate three coverage files (one for each read group) in one go.

Of particular importance is the use of -a option when we compute depth. Because of this flag samtools

depth outputs depth at every position even is the coverage at that position is 0. This woild allow us to
paste the three datasets side by side making sure that every row described the same position of the reference
genome.

If your dataset has a di↵erent number of read groups -> replace 3 within the range()

function with that number

In [8]: for item in range(3):

!samtools depth -a hiv_mapping_{item}.bam > readgroup_{item}.cvrg

2

Listing files shows three additional datasets (ending with cvrg that we have just generated):

In [9]: !ls

9 hiv mapping 1.bam readgroup 1.cvrg

all cvrg.txt hiv mapping 2.bam readgroup 2.cvrg

hiv mapping.bam ipython galaxy notebook.ipynb

hiv mapping 0.bam readgroup 0.cvrg

Now we can paste these three files side by side removing duplicate columns using UNIX cut command:

In [10]: !paste readgroup_* | cut -f 1,2,3,6,9 > all_cvrg.txt

This new datasets called all cvrg.txt contains five columns (see outputs of head and tail commands
below):

• Reference genome name
• Position in the genome
• Coverage in sample A
• Coverage in sample B
• Coverage in sample C

In [11]: !head -n 4 all_cvrg.txt

O1BFS1860 1 3581 3577 3642

O1BFS1860 2 3681 3702 3781

O1BFS1860 3 3694 3716 3789

O1BFS1860 4 3711 3735 3823

In [12]: !tail -n 4 all_cvrg.txt

O1BFS1860 8159 3486 3524 3585

O1BFS1860 8160 3454 3495 3543

O1BFS1860 8161 3410 3456 3493

O1BFS1860 8162 3383 3428 3476

1.7 Plotting coverage across the HIV genome

Let’s import pandas a data manipulation library that allows datasets to be handled in an R-like way:

In [13]: import pandas as pd

We will then import the all cvrg.txt dataset as Pandas dataframe:

In [14]: data = pd.read_table(’all_cvrg.txt’,header=None)

Set column names

In [15]: data.columns=["Ref","pos","sample A","sample B","sample C"]

And take a look at the result

In [16]: data.head()

Out[16]: Ref pos sample A sample B sample C

0 O1BFS1860 1 3581 3577 3642

1 O1BFS1860 2 3681 3702 3781

2 O1BFS1860 3 3694 3716 3789

3 O1BFS1860 4 3711 3735 3823

4 O1BFS1860 5 3717 3745 3838

3

Next we will import matplotlib - a graphing library:

In [17]: import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

and simply plot the data

In [18]: data.plot(x="pos")

Out[18]: <matplotlib.axes. subplots.AxesSubplot at 0x7f5a1cb446d0>

You can see that coverage a fairly even across the three samples peaking at around 8,000x

In []:

4

